Abstract

Using first-principles calculations we have analyzed the dependence of spontaneous polarization on lattice parameters and tetragonality ratio in natural and artificial structures of tetragonal BaTiO3 (BTO) and PbTiO3 (PTO), in order to establish the conditions needed for obtaining increased spontaneous polarization. Conventional knowledge of the polarization in PTO being higher than in BTO due to its larger tetragonality ratio and increased chemical activity of the A-site cation has been confirmed. In addition, a peculiar dependence of the spontaneous polarization on unit cell volume has been revealed. Specifically, at the equal tetragonality ratio, a given ferroelectric material (be it BTO or PTO), with a larger unit cell volume will have a larger spontaneous polarization. This may be related to the augmenting or reduction of short-range repulsion forces that tend to stabilize a centrosymmetrical structure. Therefore, a large tetragonality ratio is not absolutely necessary for obtaining increased spontaneous polarization, if the unit cell volume is large. The present results might partly explain why one should expect that BiFeO3, with a rather modest tetragonality ratio in thin film form, should have very large spontaneous polarization. That is, the chemical bonding and the unit cell volume are similar to PTO, whose polarization is close to 100μC/cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.