Abstract

コホネンの自己組織化マップ(SOM)はニューラルネットワークの一つであって,入力データの特徴を教師なし競合近傍学習によって学習するという特徴を持っている.SOMの学習アルゴリズムによると,学習速度は学習データと特徴マップの初期値によって影響を受けることがわかる.著者は,特徴マップの初期値をランダムに決定する方法を改善することによって学習速度の高速化が図れるのではないかと考えた.初期値をランダムに決定すると,入力ベクトル空間と特徴マップ上の位置の間に何の関連付けも行われない状態となる.学習終了時には入力ベクトル空間と特徴マップ上の位置が関連付けられていることを考えると,初期化の段階で関連付けが行われないことによって,学習速度に影響が生じることが予想される. この論文では,学習処理を行う前の初期化の段階で,学習データを手がかりに特徴マップのノード交換を行って,入力ベクトル空間と特徴マップ上の位置の間に関連付を行う手法を提案する.さらに,これによる学習速度の高速化の可能性について検討する.加えて,全ノードの平均移動距離を,SOM の収束を判定するための新たな判定基準として用いることを提案する.実験の結果,学習データの約5%を用いて初期ノード交換を行うことにより,十分な対応付けの効果が得られることがわかった.また,従来手法に比べて提案手法は,全ノードの平均移動距離が,平均で約64%に,良好な場合は約45%に短縮された.従来手法の判定基準で収束を判定した場合,約55%の時間で収束が完了したと判定された.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.