Abstract

Markedly smaller myofibers including branched myofibers (SF) were contained in regenerated skeletal muscles. However, its functional properties are not yet sufficiently understood. The present study examined the metabolic, contractile properties and hypertrophy of SF included in rat skeletal plantaris muscles regenerated from eccentric contraction-induced muscle injury. Succinate dehydrogenase and alpha-glycerophosphate dehydrogenase activity of SF were respectively similar to that of other normal size myofibers (NF) within regenerated muscles. The shortening velocity of skinned fibers prepared from branched myofibers isolated from regenerated muscles was slightly slower than that of control muscles. In addition, the extent of glycogen depletion in SF was similar to that of NF after exhaustive running. Therefore, SF were innervated by motoneurons and recruited during the contractile activity of the skeletal muscle. No matter when the regenerated muscle was loaded by synergistic ablation, the continued existence of SF was observed. Therefore, the ability of hypertrophy in SF may be distinct from that in NF. The physiological properties of SF were similar to that of normal myofiber, except for the ability to regulate hypertrophy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.