Abstract
Periodontal ligament (PDL) has a heterogeneous cell population, where some of the cells may be capable of differentiating into either cementoblasts or osteoblasts. Recently, C 2 H 2 zinc finger transcription factor Osterix has been reported. Osterix is one of the master regulators of bone cell differentiation and it has two different isoforms. According to a recent report, osteogenic differentiation of murine embryonic stem cells can be induced by overexpression of Osterix. The purpose of this study was to investigate about the expression of Osterix on human PDL (hPDL), and whether the osteogenic differentiation of hPDL cells can be induced by overexpression of Osterix. hPDL cells were obtained from healthy human teeth indicated for extraction for orthodontic treatment. All procedure used in this study was approved by the local ethical committee of Tokyo Medical and Dental University. To investigate expression of Osterix mRNA in hPDL tissues and cells, RT-PCR experiments were performed. Two different isoform Osterix expression vectors were made and transiently transfected into hPDL cells. Osteogenic differentiation was assessed by RT-PCR for genes associated with the osteoblast lineage such as Osteopontin, Osteocalcin, and Bone Sialoprotein. RT-PCR analyses showed that osterix mRNA was expressed in both hPDL tissue and cells. The expression of Osterix short isoform was higher than that of the long isoform. Overexpression of Osterix induced upregulated expression of Bone Sialoprotein mRNA. In expression levels of Osteopontin and Osteocalcin mRNA, compared to the control, no difference was observed. In conclusion, Osterix plays important roles in the osteoblastic differentiation in hPDL cells and modulates the mineralization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.