Abstract

This paper describes a nobel method of force/torque sensorless control for a single link flexible arm. The flexible arm includes multiple oscillation modes and its dynamical behavior is generally described as multiple mass spring system. In such a system, it is necessary to suppress the vibrations induced by the multiple oscillation modes. To address the above issue, first, this paper shows that the system stability increases by a feedback of reaction torque. In the proposed approach, the reaction torque is identified by using disturbance observer. Furthermore it is possible to estimate the position where the flexible link arm contacts with target environment. These features make it easy to realize the force/torque sensorless control. Second, the analytical comparison between the sensor-based approach and sensorless approach is described. These analyses show that sensorless approach is effective for a realization of stable force control in the flexible link arm system. The validity of the proposed method is confirmed in several experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.