Abstract

This report shows effect of sound insulation by adhesion of porous materials and film laminated panel. It deals a technique for estimating damped vibration of automotive body panels with sound-proof structures. It calculates damping properties for sound-proof structures involving elastic body, viscoelastic body and Biot type porous materials by three-dimensional finite element method. In this analysis, particle displacement vectors for internal air in the porous materials are adopted as unknowns for the discretized equations for finite element method. And displacement vectors for frame in the porous materials are also selected as the unknowns. A numerical code is developed. For numerical examples, Biot type porous materials are sandwiched between panel and film, and laminated film. Frequency response functions were calculated for panels laminated with porous material (felt) and viscoelastic body (film) and porous material (felt) using this technique, the calculation results almost agreed with the experimental results. And effect of the vibration performance by with/without adhesion is clarified. At with adhesion, the internal air and the frame in the porous material are same vibration. But at without adhesion, the internal air and the frame in the porous material are greatly different vibration. It is thought that change of sound insulation takes place by this.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.