Abstract
The authors developed a method to produce nonequilibrium plasma by dielectric barrier discharge (DBD) in supersonic flow and investigated the possibility for using it as an ignition enhancement technique in a high speed engine, such as a scramjet engine. The discharge characteristics were investigated by varying applied voltage and the flow Mach number. It was revealed from direct photographs that the discharges got stronger and the volume got larger as flow Mach number increased. Estimated discharge power indicated that nonequilibrium plasma could be generated by considerably small energy in comparison with thermal plasma such as a plasma jet torch, which is a typical thermal plasma. The emissions from several excited molecules and atoms were confirmed by spectroscopic measurement of the plasma. Ignition delay analysis revealed that the effect of ozone (O3) addition to shorten the ignition delay time of mixture is almost equal to those of O or H radicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.