Abstract

In order to meet different performance requirements, a multi-objective optimization strategy was presented for the lateral buckling control of large-scale subsea pipeline systems based on the analytical model. The multi-objective optimization was performed with the NSGA-II algorithm to improve the lateral buckling control effects on the subsea pipeline through optimization of the layout scheme and design parameters of the distributed buoyancy sections. The optimization results show that the amount of the distributed buoyancy sections does not have absolute influence on the lateral buckling performance, and the Pareto-optimal set obtained from the multi-optimization provides helpful reference for designers to consider multiple performance requirements and choose more rational schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.