Abstract

In order to understand the transmission properties of laser-induced acoustic in liquid, the transmission properties of laser-induced acoustic were analyzed theoretically, and the experimental research on the laser-induced acoustic was carried out by using high speed camera and fiber MEMS hydrophone. Wavelet transform was used to analyze the spectrum characteristics of the laser-induced acoustic signals at different locations. The results show that the laser-induced acoustic is a pulsating source, amplitude and distance are inversely proportional in the process of laser acoustic signal transmission; laser acoustic analysis of band memory has obvious dominant frequency, with peak frequency stability of 3.1 kHz and bandwidth stability of 3 kHz; low frequency signal energy accounted for more than 70% of the total energy, high frequency part is mainly noise; from the power spectrum waveform analysis, low frequency signal amplitude with time and distance attenuation is slower, and high frequency noise with time and distance transform decays faster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.