Abstract

The goal. Identify the relationship between seasonal temperature changes and vertical and horizontal displacements of GNSS control points based on data obtained by the automated monitoring system of the Dnipro HPP dam in the period from 2016 to 2020. Input data. The research used data of uninterrupted GNSS measurements obtained at 16 points of the Dnipro HPP dam from mid-2016 to mid-2020. Method. A specially developed software product analyzes the GNSS time series of measurements pre-processed by the GeoMoS system to determine the parameters of seasonal displacements and their relationship with seasonal changes in air temperature. The GNSS time series analysis. Based on the conducted research, the influence of environmental temperature has a decisive effect on the cyclicity of dam deformations. This applies to both horizontal and vertical displacements but in the absence of significant changes in the water level in the upper reservoir. Values of extreme displacements increase closer to the middle of the dam and decrease at the edges. This tendency is observed every year in the study period. According to the three-year GNSS dam monitoring, the amplitude of semi-annual horizontal oscillations of the control points relative to the dam axis is in the range of 15-18 mm. Almost all vectors of horizontal displacements are perpendicular to the axis of the arcuate dam. In the first half of the year, the vectors of horizontal displacements aim to widen the dam, and in the second half of the year - at compressing the dam. The analysis of the data represents that almost every year, extreme deviations, both horizontal and vertical, occur in February and August. Temperature extremes occur faster than excessive GNSS displacements. For the dam of the Dnipro HPP, the extreme horizontal displacements lag on average by 37 days, and the vertical ones - by 32 days from the extreme temperatures. The deformations of the dam are related to the concrete structure temperature, which changes with a certain delay relative to the air temperature. The magnitudes of extreme displacements and the epoch of their manifestation depend on the dam's design and its technical parameters. For each dam, these extreme displacements and the periods of their representation will be different. Accordingly, monitoring these displacements and their changes over time is one of the criteria for assessing the general condition of the dam. Scientific novelty and practical significance. The regularities of the connection between the change of temperature and the displacements of the GNSS points, revealed during the research, can be used for the further study of data processing and analysis of the hydraulic structures monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call