Abstract
PDF HTML阅读 XML下载 导出引用 引用提醒 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响 DOI: 10.5846/stxb201601080054 作者: 作者单位: 四川农业大学,四川农业大学,四川农业大学,四川农业大学,四川农业大学,四川农业大学 作者简介: 通讯作者: 中图分类号: 基金项目: 国家“十二五”科技支撑资助项目(2010BACO1A11);四川省“十二五”农作物育种攻关资助项目(2011NZ0098-10) Effects of simulated nitrogen deposition on the substrate quality of foliar litter in a natural evergreen broad-leaved forest in the Rainy Area of Western China Author: Affiliation: Sichuan Agricultural University,Sichuan Agricultural University,Sichuan Agricultural University,Sichuan Agricultural University,Sichuan Agricultural University,Sichuan Agricultural University Fund Project: 摘要 | 图/表 | 访问统计 | 参考文献 | 相似文献 | 引证文献 | 资源附件 | 文章评论 摘要:为理解氮沉降对华西雨屏区天然常绿阔叶林凋落物分解过程的影响,采用立地控制实验和凋落物分解袋法,研究了低氮沉降(L,50 kg N hm-2 a-1)、中氮沉降(M,150 kg N hm-2 a-1)和高氮沉降(H,300 kg N hm-2 a-1)对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响。结果表明:N沉降抑制了凋落叶的分解,并随着N沉降量的增加,抑制作用增强。N沉降遏制了凋落叶的C、N释放和纤维素降解,促进了P释放。N沉降提高了凋落叶的C/P比,中氮和高氮处理提高了凋落叶C/N比。N沉降显著增加了凋落叶N、木质素和纤维素的含量,分解1年后,各N沉降处理的木质素/N和纤维素/N均显著高于对照。N沉降提高了质量残留率与C/N、木质素/N和纤维素/N的相关性,降低了与C/P的相关性。可见,模拟N沉降显著影响了华西雨屏区天然常绿阔叶林凋落叶分解过程中的基质质量,进而影响了凋落叶的分解过程。 Abstract:Litter, an essential component of the forest ecosystem, plays an important role in maintaining site fertility, sequestering carbon, and nursing soil biodiversity. However, the substrate quality of decomposing litter is affected by increasing nitrogen deposition mainly because of fossil fuel combustion and chemical fertilizer production and use. Theoretically, decomposition of atmospheric nitrogen may have a strong impact on litter decomposition in three ways. The first approach is that nitrogen deposition may alter the chemical components of litter by direct nitrogen addition. The second approach is that nitrogen addition can change the growth of plants and carbon and nutrient allocations in plant tissues and indirectly lead to changes in litter substrate quality. The third approach is that nitrogen deposition may result in soil acidification, and, in turn, have strong effects on litter substrate quality indirectly. To date, there is limited information on the changes in litter substrate quality due to atmospheric nitrogen deposition in the Rainy Area of Western China. To understand the effects of increasing nitrogen deposition on the litter decomposition process in natural evergreen broadleaved forests in the Rainy Area of Western China, a field litter decomposition experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City. Between November 2013 and November 2014, we conducted the field experiment by using the litterbag method. Four levels of nitrogen deposition were set:control (0 kg N hm-2 a-1), low nitrogen (50 kg N hm-2 a-1), medium nitrogen (150 kg N hm-2 a-1), and high nitrogen (300 kg N hm-2 a-1). The results indicated that nitrogen deposition significantly influenced litter substrate quality, and concentrations of carbon, nitrogen, and cellulose in the leaf litter were found to increase significantly with nitrogen addition. Nitrogen deposition also affected C/P and C/N of the leaf litter; all nitrogen deposition treatments significantly increased C/P, whereas medium nitrogen and high nitrogen treatments significantly increased C/N. Since nitrogen deposition significantly increased the nitrogen concentration of the litter, exacerbating the accumulation of litter lignin and cellulose, after decomposing for 1 a, lignin/N and cellulose/N after each nitrogen deposition treatment were significantly higher than those in the control. The correlation coefficient of mass remaining of foliar litter with C/N, lignin/N, and cellulose/N was increased by nitrogen deposition, while C/P was reduced. Thus, simulated nitrogen deposition influenced the substrate quality of foliar litter in natural evergreen broad-leaved forest in the Rainy Area of Western China, and influenced the decomposition process of the litter. 参考文献 相似文献 引证文献
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.