Abstract

In recent years, many histogram equalization algorithms have been proposed for the consumer electronics field. However, many of these algorithms are hard to realize. Even, for example, some algorithms may cause an effect on brightness saturation. Therefore, a range limited adaptive brightness preserving multi-threshold histogram equalization(RLAMHE) algorithm is presented in this paper. First, the input image is smoothed appropriately to obtain the number of its histogram peak points (N+1). Then the Otsu algorithm is extended by the N-threshold, and N segmentation thresholds of the image are obtained in this way, so that the image is segmented according to this threshold. In order to maximize the brightness of the input image, a range of the equalized image is recalculated according to the minimum Absolute Mean Brightness Error(AMBE) criterion of the input and the output image. Finally, all sub-images are equalized separately using the new equalization range. Test results show that the proposed algorithm is more efficient than other algorithms and can obtain sharper image details. Meanwhile, the overall brightness of the image is also ideal. Using this algorithm to process Lena graphs, the absolute mean luminance error is 0.416 4, which is obviously better than that obtained using RLBHE algorithm(0.629 5).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.