Abstract

The small-amplitude solitary periodic wave solutions and the local critical periodic bifurcations of the traveling wave equations for a class of reaction-diffusion equations with quintic nonlinear reaction terms and constant diffusion terms were studied. First, the reaction-diffusion equation was transformed into the corresponding traveling wave system through traveling wave transformation. The first 8 singular point quantities of the system were calculated with the singular point value method and the computer algebra software MATHEMATICA. Then, 2 center conditions for the singular point of the system were obtained, 8 limit cycles were proved to bifurcate at the origin of the traveling wave system, and 8 small-amplitude solitary periodic wave solutions were found to exist in the corresponding nonlinear reaction-diffusion equation. Furthermore, through computation of the period constants, the weak center order for the origin of the traveling wave system was derived. Then, the system was proved to have at most 3 local critical periodic bifurcations and be able to reach the 3 bifurcations. Moreover, the analysis of the critical periodic bifurcations of the traveling wave system reveals that the reaction-diffusion equation has 3 critical periodic wavelengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call