Abstract
Nanofibers have exceptional properties due to their diameter and large surface area to mass ratio. Thus, nanofibers can potentially be used as electrodes in highly sensitive biosensing systems, bio-fuel cells, and high-power devices. In this study, conductive polyurethane-FeCl3 composite nanofibers were fabricated by electrospinning. The optimal electrospinning conditions were investigated, and the physical and chemical properties of the composite were evaluated. Conductive polyurethane/FeCl3 fibers of 1-5 µm in diameter were obtained, and their conductivity was 13.7±1.47×10-3 S/m. The effects of the morphology of the material were also monitored, and it was found that a fiber mat was 10 times more conductive than a film, because the crystallinity of the polyurethane and the Fe3+ distribution affect the electrical properties. The conductive nanofibers are flexible because the fiber substrate is made of polyurethane. Therefore, the fibers demonstrated in this study could make it possible to control the electric properties by modifying the nanofiber morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.