Abstract

The exponential stability of complex-valued neural networks with time-varying delays and reaction-diffusion terms was studied. Firstly, the addressed systems were separated into their real parts with the complex-valued activation functions assumed to be divided into the real parts and imaginary parts. Secondly, some sufficient conditions for ensuring the exponential stability of the equilibrium states of the systems were established based on the vector Lyapunov function method and the M-matrix theory. The obtained criteria have no free variables and reduced conservatism compared with the existing results. A numerical example proves the correctness of the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.