Abstract

A new analytical approach was proposed for free vibration of functionally graded (FG) double-nanobeam systems (DNBSs) embedded in viscoelastic medium under the framework of symplectic mechanics and the nonlocal Timoshenko beam theory. In the Hamiltonian system, the dual variables of the displacement and the rotation angle are the generalized shear force and bending moment, respectively. The high-order governing partial differential equations in the classical Lagrangian system were simplified into a set of ordinary differential equations through introduction of an unknown vector composed of the fundamental variables and their dual variables. The free vibration of DNBSs was finally reduced to an eigenproblem in the symplectic space. Analytical frequency equations and vibration mode functions were directly obtained with the symplectic eigensolutions and boundary conditions. Numerical results verify the accuracy and efficiency of the presented method. A systematic parametric study on the small size effect, the interaction between the double nanobeams and the viscoelastic foundation influence, was also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.