Abstract

In this study, the effects of work-hardening and pre-existing stress in the machined surface layer of low-carbon austenitic stainless steel on the welding-induced residual stress were experimentally investigated through the use of weld specimens with three different surface layers; as-cutout, mechanically-polished and electrolytically-polished. The high tensile and compressive stresses exist in the work-hardened surface layer of the as-cutout and mechanically-polished specimens, respectively. Meanwhile, no stress and work-hardened surface layer exist in the electrolytically-polished specimen. TIG bead-on-plate welding under the same welding heat input conditions was performed to introduce the residual stress into these specimens. Using these welded specimens, the distributions of welding-induced residual stress were measured by the X-ray diffraction method. Similarly, the distributions of hardness in welds were estimated by the Vickers hardness test. And then, these distributions were compared with one another. Based on the results, the residual stress in the weld metal (WM) is completely unaffected by the machined surface layer because the work-hardened surface layer disappears through the processes of melting and solidification during welding. The local maximum longitudinal tensile residual stress in the heat affected zone (HAZ) depends on the work-hardening but not on the existing stress, regardless of whether tensile or compressive, in the machined surface layer before welding. At the base metal far from WM and HAZ, the residual stress is formed by the addition of the welding-induced residual stress to the pre-existing stress in the machined surface layer before welding. The features of the welding-induced residual stress in low-carbon austenitic stainless steel with the machined surface layer and their influential factors were thus clarified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.