Abstract

We report experimental results on enhanced light transmission through double-layered (Ag/Au) metallic hole arrays within a skin-depth. Zero-order transmission spectrums are characterized as a function of Ag film's thickness, which extends from \delta/15, \delta/6 to approximately \delta, where \delta is a skin-depth. In contrast with other reported results (Refs.[11-13]) in single-layered metallic hole arrays, our experimental results show much more dramatic properties of transmission process dependent on sub- thickness. It is shown that there is no negligible transmission enhancement at \delta/16. At \delta/6, much higher transmission efficiency can be achieved. With film's thickness being close to \delta, the transmission efficiency declines contrarily. Simultaneously, the corresponding resonant peak also slightly moves toward the shorter wavelength. It is proposed that the coupling of surface plasmon polaritons (SPPs) at Ag/Au interface within is involved in the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.