Abstract

The performance of Fourier telescope transmitting system directly affects the image resolution and quality. The parameters and performance requirements of laser are analyzed. The design outline of fiber laser is presented. Meanwhile, the point is put forward that the laser coherence length need to be at least 1.6 times of the residual optical path. The stability of laser power and frequency is simulated. To ensure the stability of the laser, some methods are put forward from the points of design, algorithm and practice. Furthermore, combined with the results of simulation and experiment, the influences of the transmitter performance on image quality is analyzed, from the aspects of transmitting aperture layout, aperture amount, position precision and the beam pointing error. And point out that baseline redundancy, image resolution, target spectrum and image quality are the factors should be synthetically considered when arranging transmitter array. The formula for calculating the number of transmitting apertures is obtained based on the two-dimensional sampling theorem and the statistical analysis results. The transmitting aperture number is calculated for the Fourier telescope whose resolution would be 5 cm for objects in 1000 km low earth orbit. In addition, it is concluded that the transmitting aperture position error should be less than 5% of the minimum aperture spacing. ©, 2015, Chinese Optical Society. All right reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.