Abstract

This paper reports a flutter investigation of a re-entry space vehicle having an elastic rotational mode caused by its launching rocket. The elastic rotational mode is taken into consideration as an elastic roll mode or an elastic yaw mode. Flutter experiments were conducted in NAL Transonic Wind Tunnel. The DPM (Doublet-Point Method) is used to calculate flutter boundaries. It is shown that the elastic roll mode may lower critical flutter speed, because its existence alters the natural frequency of an anti-symmetric bending mode with which flutter occurs. A coupling between the elastic yaw mode and an anti-symmetric bending mode of a tip-fin wing is also shown to be critical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call