Abstract

This paper proposes a fertilizer mixing device that combines pressure relief return and mechanical agitation to address the issues in the current water-fertilizer integration equipment related to limited fertilizer mixing methods and inconvenient irrigation pressure regulation. The device employs different mixing modes for various fertilizer forms and uses pressure relief return to adjust irrigation pressure, thereby enhancing the efficiency of water-fertilizer mixing and optimizing energy consumption. The experimental results indicate that the reflux mode is suitable for liquid-type fertilizers which are fast dissolving and easy to diffuse, and its EC value is stable at about 6.60 mS/cm, which is close to the calibrated value of 6.80 mS/cm. The stirring paddle mode compensates for the reflux mode's weak mixing effect, making it suitable for solid powder-type fertilizers' mixing operation. The EC value remains stable at approximately 8.60 mS/cm when calibrated at 8.70 mS/cm. The “stirring paddle + two-way reflux” mode demonstrates the most robust mixing effect and is suitable for mixing solid granular fertilizers. When calibrated at 8.20 mS/cm, it stabilizes at approximately the calibration value after 105 s. This research provides technical support and a theoretical basis to accomplish efficient, energy-saving, and rational application of water-fertilizer integration across diverse fertilizer forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call