Abstract

Surface oscillation behavior of electromagnetically levitated molten copper was investigated under a static magnetic field in the range from 0 T to 1.0 T. Although the frequencies of m=0 and ±1 oscillations were almost kept constant up to 0.2 T, they became negligibly small above 0.2 T. The frequency of m=±2 oscillation gradually decreased as the static magnetic was increased up to 1.0 T. This behavior was basically interpreted in the following way, i.e., the Lorentz force acting on the copper droplet causes a resistive force to the surface oscillation, which leads to decreases in frequencies of surface oscillation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.