Abstract

A novel polarization maintaining fiber (PMF) loop is proposed and used for an interferometric fiber optic gyroscope (FOG). By splicing a conventional PMF loop with two pigtailed polarization beam splitters, polarized light can be guided to propagate along the slow and fast axes of the PMF in sequence to double its effective optical length in the loop. In particular, the resultant optical length in the combined loop is partially self-compensated for some external disturbances, such as transverse strain. Primary experiments on the FOG using the proposed loop demonstrate that the average static bias deviation between –40 and +60 oC is less than 0.050 deg./h, and the average bias variation under conventional random vibration test is less than 0.10 deg./h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.