Abstract

Though Monte Carlo localization is a popular method for mobile robot localization, it requires a method for recovery of large estimation error in itself. In this paper, a recovery method, which is named an expansion resetting method, is newly proposed. The combination of the expansion resetting method and the sensor resetting method, which is a typical resetting method, is also proposed. We then compared our methods and others in a simulated RoboCup environment. Typical accidents for mobile robots were produced in the simulator during trials. We could verify that the expansion resetting method was effective for recovery from small irregular changes of a robot's pose, and that the combination method could deal with both large and small irregular changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.