Abstract

In this study, mechanical properties of grain boundary are evaluated by indentation tests at grain boundaries and grains consisting of the grain boundary. We find that maximum displacement of indenter at the grain boundary is different from the average of maximum displacement of the two grains. Moreover, we perform three-dimensional crystal plasticity FEM analyses on the indentation test and we discuss factors and mechanism on mechanical properties of grain boundary. Dislocation information is introduced into a hardening law of crystal in order to investigate the effect of dislocation behavior on the grain boundary. The load-displacement curves obtained by the crystal plasticity simulation predict that the maximum displacement of indenter at the grain boundary depends on crystal orientation and dislocation behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.