Abstract

Epitranscriptomics has emerged as another level of epigenetic regulation similar to DNA and histone modifications. N 6-methyladenosine (m6A) is one of the most prevalent and abundant posttranscriptional modifications, widely distributed in many biological species. The level of N 6-methyladenosine RNA methylation is dynamically and reversibly regulated by distinct effectors including methyltransferases, demethylases, histone modification and metabolites. In addition, N 6-methyladenosine RNA methylation is involved in multiple RNA metabolism pathways, such as splicing, localization, translation efficiency, stability and degradation, ultimately affecting various pathological processes, especially the oncogenic and tumor-suppressing activities. Recent studies also reveal that N 6-methyladenosine modification exerts the function in immune cells and tumor immunity. In this review, we mainly focus on the regulatory mechanisms of N 6-methyladenosine RNA methylation, the techniques for detecting N 6-methyladenosine methylation, the role of N 6-methyladenosine modification in cancer and other diseases, and the potential clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call