Abstract

N = 4 supersymmetric extensions of the ℓ-conformal Galilei algebra are constructed by properly extending the Lie superalgebra associated with the most general N = 4 superconformal group in one dimension D(2,1;α). If the acceleration generators in the superalgebra form analogues of the irreducible (1, 4, 3)-, (2, 4, 2)-, (3, 4, 1)-, and (4, 4, 0)-supermultiplets of D(2, 1; α), the parameter α turns out to be constrained by Jacobi identities. In contrast, if the tower of the acceleration generators resembles a component decomposition of a generic real superfield, which is a reducible representation of D(2, 1; α), α remains arbitrary. An N = 4 ℓ-conformal Galilei superalgebra recently proposed in [Phys. Lett. B 771 (2017) 401] is shown to be a particular instance of a more general construction in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.