Abstract

Newly synthesized, cost-effective corrosion inhibitor, N-(4-(1,3-benzothiazol-2-ylcarbamoyl)phenyl)isonicotinamide (BIA) was evaluated for mild steel/1M HCl interface. BIA showed a maximum inhibition efficiency of 90.40 % at 100 ppm and 303 ± 1 K, with efficiency increasing with concentration but decreasing with temperature. Inhibitor’s adsorption followed Langmuir isotherm via physicochemical interactions. Activation parameters revealed BIA retards both metal dissolution and hydrogen evolution held in unimolecular process. Potentiodynamic polarization (PDP) divulged BIA as a mixed-type, impeding charge-transfer. Electrochemical impedance spectra (EIS) confirmed BIA forms a protective double layer, blocking active sites at the interface. Surface analysis supported a protective film formation. Global and local reactivity descriptors using DFT/B3LYP/6-311G++(d,p) were calculated to relate inhibition efficiency with BIA’s electronic properties. Molecular dynamics simulation (MDS) showed an interaction energy of −224.7 kJ/mol between BIA and Fe(110) at 303 K, with Radial Distribution Function (RDF) showing bond lengths under 3.5 Å, confirming a chemical interaction. Theoretical results align with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.