Abstract

Tungsten, tantalum and osmium are important alloying elements in the nuclear technology research and development, particularly in nuclear fission/fusion power plant material applications. So, data results of the cross sections and emission spectra of neutron-induced reactions are required to predict nuclear responses in these elements. However, the cross sections measurements of (n,2n) reactions on tungsten, tantalum and osmium isotopes are rather limited in the literature. In this case, theoretical approaches are often used for obtaining the cross section data. In this article, theoretical (n,2n) cross sections on 180,182-184,186W, 181Ta and 186,192Os target nuclei are calculated up to 20 MeV energy, using the simulation codes TALYS 1.95, ALICE/ASH and CEM03.01. Further, the empirical (n,2n) systematics based on the statistical model have been used for predicting the cross section data at ∼14 MeV incident neutrons. The present results from the empirical systematics and model-based calculations are also compared with the literature experimental data, and JENDL-5.0, ENDF/B-VIII, JEFF3.3 and TENDL-2021 libraries. This paper can provide a contribution to complete description of the (n,2n) reactions considering the lack of experimental cross section data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call