Abstract

The research and development of substitutes for petroleum-based plastics has become a hot topic. The N-(2-hydroxyl)-propyl-3-trimethylammonium chitosan chloride (HTCC, 10 wt%)/sodium carboxymethyl cellulose (CMC) films have showed enhanced mechanical properties, which also provide a potential substitute to petroleum-based plastics. In this paper, calcium carbonate was crystallized (cry-CaCO3) in HTCC/CMC film-forming solutions, and the effects of the cry-CaCO3 particles on HTCC/CMC film properties including microstructures, mechanical properties, thermal stability, whiteness, and wettability were characterized. An HTCC/CMC film with commercially available CaCO3 (com-CaCO3) was used as a control. The results showed that the cry-CaCO3 promoted the homogeneous distribution of the HTCC/CMC matrix and significantly improved mechanical properties, but showed little effect on the thermal stability, whiteness and wettability of the films. To reveal the affecting mechanism of cry-CaCO3 on HTCC/CMC film properties, the cry-CaCO3 particles were isolated from film-forming solutions and characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA) methods. The results showed that the HTCC/CMC matrix modulated spherical CaCO3 particles, and the macromolecules were encapsulated in cry-CaCO3 particles, decreasing their adhesion to the HTCC/CMC matrix while increasing their distribution in the HTCC/CMC matrix. The strong electrostatic, hydrogen bonding and flexible interaction between CMC and cry-CaCO3 particles played a key role in improving the mechanical properties of HTCC/CMC films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call