Abstract

We utilize an “inductive pulse” quartz crystal microbalance method to study N2 adsorption on quartz, silver, and a single wall carbon nanotube at 77 K. This method is based on radio frequency electric pulse excitation and ring-down signal measurements of quartz crystal resonators located in an induction coil. The surface areas and adsorption strength c are estimated by the Brunauer-Emmett-Teller (BET) model. The estimated c for quartz and silver surface are about 1/5 times smaller than that measured by the conventional method. This is explained as suppression of the self-heating effect, by using our inductive pulse method. We suggest a simple theoretical estimation of self-heating effects on conventional and inductive pulse methods. For the intermediate adsorption range, we analyze our data using the generalized Frenkel-Hasley-Hill (FHH) model with fractal dimension. While the quartz and silver have fractal dimensions of about 2.2±0.1, single wall carbon nanotube has 1.2±0.1, which are explained by its strong adsorptive force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.