Abstract
Ethnopharmacological relevanceMyxopyrum serratulum A. W. Hill. (Oleaceae) is a traditionally used Indian medicinal plant for the treatment of cough, asthma and many other inflammatory diseases. Aim of the studyIn this study, the protective effects of M. serratulum on airway inflammation was investigated in ovalbumin (OVA)-induced murine model of allergic asthma and lipopolysaccharide (LPS)-stimulated inflammation in RAW 264.7 murine macrophages, and the possible mechanisms were elucidated. Materials and methodsThe phytochemicals present in the methanolic leaf extract of M. serratulum (MEMS) were identified by reverse phase high performance liquid chromatography (RP-HPLC) analysis. In vitro anti-inflammatory activity of MEMS were evaluated by estimating the levels of nitric oxide (NO), reactive oxygen species (ROS) and cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-17A, IFN-γ, TNF-α, G-CSF and GM-CSF) in LPS-stimulated RAW 264.7 macrophages. In vivo anti-asthmatic activity of MEMS was studied using OVA-induced murine model. Airway hyperresponsiveness (AHR), was measured; total and differential cell counts, eosinophil peroxidase (EPO), prostaglandin E2 (PGE2), NO, ROS, and cytokines (IL-4, IL-5 and IL-13), were estimated in bronchoalveolar lavage fluid (BALF). Serum total IgE level was measured; and the histopathological changes of lung tissues were observed. The expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in lung tissue homogenates were detected by Western blot. ResultsThe chromatographic analysis of MEMS identified the presence of gallic acid, protocatechuic acid, catechin, ellagic acid, rutin, p-coumaric acid, quercetin, naringenin and apigenin. MEMS (125 and 250 μg/mL) dose-dependently reduced the levels of NO, ROS and pro-inflammatory cytokines in LPS-stimulated RAW 264.7 macrophages. MEMS (200 and 400 mg/kg, p.o.) significantly (p < 0.05) alleviated AHR; number of inflammatory cells, EPO, PGE2, NO, ROS, and cytokines (IL-4, IL-5 and IL-13) in BALF; serum total IgE and the histopathological changes associated with lung inflammation. Western blot studies showed that MEMS substantially suppressed COX-2 and iNOS protein expressions in the lung tissues of OVA-sensitized/challenged mice. ConclusionsThe present study corroborates for the first time the ameliorative effects of MEMS on airway inflammation by reducing the levels of oxidative stress, pro-inflammatory cytokines and inhibiting COX-2, iNOS protein expressions, thereby validating the ethnopharmacological uses of M. serratulum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.