Abstract

In perovskite solar cells, passivating the surface or interface that contains a high concentration of defects, specifically deep-level defects, is one of the most important topics to substantially enhance the power conversion efficiency and stability of the devices. Long-chain alkylammonium bromides have been widely and commonly adapted for passivation treatment. However, the mechanism behind is still not well explored as the formation route and the exact structure of these alkylammonium bromide-based low-dimensional perovskites are unclear. Herein, we investigate the physical and chemical properties of an n-hexylammonium bromide (HABr)-based low-dimensional perovskite including both thin films and single crystals. First of all, the HA2PbBr4 perovskite film and aged single crystal demonstrate different X-ray diffraction patterns from those of the fresh as-prepared single crystal. We found that the fresh HA2PbBr4 single crystal exhibits a metastable phase as its structure changes with aging due to the relaxation of crystal lattice strains, whereas the HA2PbBr4 perovskite film is pretty stable as the aged single crystal. Upon reacting with FAPbI3, HABr can be intercalated into the FAPbI3 lattice to form a mixed-cation perovskite of HAFAPbI3Br, which is in a dynamic equilibrium of decomposition and formation. In contrast, the reaction of HABr with excess PbI2 forms a stable HA2PbI2Br2 perovskite. Based on such findings, we rationally develop a HA2PbI2Br2-passivated FACs-based perovskite by reacting HABr with excess PbI2, the photovoltaics based on which are more stable and efficient than those passivated by the HAFAPbI3Br perovskite. Our discovery paves way for a more in-depth study of bromide-containing low-dimensional perovskites and their optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call