Abstract
Myrtucommulone (MC), a nonprenylated acylphloroglucinol contained in the leaves of myrtle (Myrtus communis), has been reported to suppress the biosynthesis of eicosanoids by inhibition of 5-lipoxygenase and cyclooxygenase-1 in vitro and to inhibit the release of elastase and the formation of reactive oxygen species in activated polymorphonuclear leukocytes. Here, in view of the ability of MC to suppress typical proinflammatory cellular responses in vitro, we have investigated the effects of MC in in vivo models of inflammation. MC was administered to mice intraperitoneally, and paw edema and pleurisy were induced by the subplantar and intrapleural injection of carrageenan, respectively. MC (0.5, 1.5, and 4.5 mg/kg i.p.) reduced the development of mouse carrageenan-induced paw edema in a dose-dependent manner. Moreover, MC (4.5 mg/kg i.p. 30 min before and after carrageenan) exerted anti-inflammatory effects in the pleurisy model. In particular, 4 h after carrageenan injection in the pleurisy model, MC reduced: 1) the exudate volume and leukocyte numbers; 2) lung injury (histological analysis) and neutrophil infiltration (myeloperoxidase activity); 3) the lung intercellular adhesion molecule-1 and P-selectin immunohistochemical localization; 4) the cytokine levels (tumor necrosis factor-alpha and interleukin-1beta) in the pleural exudate and their immunohistochemical localization in the lung; 5) the leukotriene B(4), but not prostaglandin E(2), levels in the pleural exudates; and 6) lung peroxidation (thiobarbituric acid-reactant substance) and nitrotyrosine and poly (ADP-ribose) immunostaining. In conclusion, our results demonstrate that MC exerts potent anti-inflammatory effects in vivo and offer a novel therapeutic approach for the management of acute inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacology and Experimental Therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.