Abstract

Spotted wing drosophila (SWD, Drosophila suzukii (Matsumura), Diptera: Drosophilidae) is recognized as an economically important pest in North America and Europe as well as in Asia. Assessments were made for fumigant and contact toxicities of six Myrtaceae plant essential oils (EOs) and their components to find new alternative types of insecticides active against SWD. Among the EOs tested, Leptospermum citratum EO, consisting mainly of geranial and neral, exhibited effective fumigant activity. Median lethal dose (LD50; mg/L) values of L. citratum were 2.39 and 3.24 for males and females, respectively. All tested EOs except Kunzea ambigua EO exhibited effective contact toxicity. LD50 (µg/fly) values for contact toxicity of manuka and kanuka were 0.60 and 0.71, respectively, for males and 1.10 and 1.23, respectively, for females. The LD50 values of the other 3 EOs-L. citratum, allspice and clove bud were 2.11–3.31 and 3.53–5.22 for males and females, respectively. The non-polar fraction of manuka and kanuka did not show significant contact toxicity, whereas the polar and triketone fractions, composed of flavesone, isoleptospermone and leptospermone, exhibited efficient activity with the LD50 values of 0.13–0.37 and 0.22–0.57 µg/fly for males and females, respectively. Our results indicate that Myrtaceae plant EOs and their triketone components can be used as alternatives to conventional insecticides.

Highlights

  • The spotted wing drosophila (SWD, Drosophila suzukii (Matsumura), Diptera: Drosophilidae), is indigenous to South-eastern Asia

  • Our results indicate that Myrtaceae plant essential oils (EOs) and their triketone components can be used as alternatives to conventional insecticides

  • Current control methods for SWD mainly depend on application of conventional insecticides such as pyrethroids, organophosphates, spinosyns, and neonicotinoids [7,8]

Read more

Summary

Introduction

The spotted wing drosophila (SWD, Drosophila suzukii (Matsumura), Diptera: Drosophilidae), is indigenous to South-eastern Asia. It has invaded and spread across North America and Europe and most recently, has been found in South America [1,2,3]. Current control methods for SWD mainly depend on application of conventional insecticides such as pyrethroids, organophosphates, spinosyns, and neonicotinoids [7,8]. There is growing interest in finding less ecologically damaging SWD control methods, such as natural enemies [9] and biopesticides [10,11,12,13], and a strong push to develop new, organic and ecologically sustainable control methods for this destructive pest.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call