Abstract
Recent rapid generation of genomic sequence data has allowed many researchers to perform comparative analyses in various mammalian species. However, characterization of transposable elements, such as short interspersed repetitive elements (SINEs), has not been reported for several mammalian groups. Because SINEs occupy a large portion of the mammalian genome, they are believed to have contributed to the constitution and diversification of the host genomes during evolution. In the present study, we characterized a novel SINE family in the anteater genomes and designated it the MyrSINE family. Typical SINEs consist of a tRNA-related, a tRNA-unrelated and an AT-rich (or poly-A) region. MyrSINEs have only tRNA-related and poly-A regions; they are included in a group called t-SINE. The tRNA-related regions of the MyrSINEs were found to be derived from tRNA Gly. We demonstrate that the MyrSINE family can be classified into three subfamilies. Two of the MyrSINE subfamilies are distributed in the genomes of both giant anteater and tamandua, while the other is present only in the giant anteater. We discuss the evolutionary history of MyrSINEs and their relationship to the evolution of anteaters. We also speculate that the simple structure of t-SINEs may be a potential evolutionary source for the generation of the typical SINE structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.