Abstract

We focus on exploring the antihepatic fibrosis effect of Myrrhone (Myr), a compound extracted from myrrh, and its effective target. Mouse hepatic stellate cells (HSCs) were cultured in vitro and activated by transforming growth factor-β induction. After Myr intervention, cell viability was assessed by theCell Counting Kit-8 assay. The α-smooth muscle actin(α-SMA) and Collagen I levels were measured by immunofluorescence, and the expressions of tumor necrosis factor-α, interleukin-6, andmatrix metalloproteinase-9were examined by enzyme-linked immunosorbent assay, and the p-Smad3 protein level in HSCs was determined by Western Blot. Small molecule-protein docking and pull-down experiments were conducted to validate the binding capacity between Nard and Smad3. In animal experiments, a mouse model of hepatic fibrosis was established with carbon tetrachloride. Myr was administered by gavage daily to determine the serum alanine aminotransferase and aspartate transaminase levels. The severity of hepatic fibrosis was evaluated by Masson staining, the α-SMA and Collagen I expressions were measured by immunohistochemistry, and the histopathological changes were examined by Sirius red and hematoxylin and eosin staining. Myr suppressed the abnormal activation of HSCs, inhibited the cell viability, downregulated the α-SMA and Collagen I, and inhibited the p-Smad3 expression. After silencing Smad3, the effect of Myr was inhibited. Molecular docking and pull-down experiments revealed the presence of a targeted binding relationship between Myr and Smad3. In mouse experiments, Myr could inhibit hepatic fibrosis. This study discovers that Myr can affect the phosphorylation of Smad3, and inhibit the activation of HSCs and the progression of hepatic fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.