Abstract

Phytoremediation is considered to be a cost-effective strategy for removing boron (B) from polluted water. In this study, Myriophyllum elatinoides, a widespread submerged or floating macrophyte, was found to survive in 40 mg B/L. Time-dependent kinetics show that the shoot exhibits a much longer period of B uptake and a much higher maximal tissue B concentration than the root. High values of the bioconcentration factor (BCF) and translocation factor (TF) indicate that M. elatinoides is a potential hyperaccumulator of B. Transmission electron micrographs show that excess B damages the cells of M. elatinoides, and the major target organelles are the chloroplast (leaf), mitochondria (stem and root), and nucleolus (root). Energy dispersive spectroscopy (EDS) shows that B is mainly deposited in the cytoplasm and on the surface of the chloroplast of the leaf cell. In the stem and root cells, B is mainly deposited on the mitochondrial membrane and in the vacuoles, respectively. This study indicates that the mechanisms of B toxicity, tolerance, and accumulation in M. elatinoides are involved in the cellular localization of B. Future work should focus on the evaluation of the physiological and genetic mechanisms involved in B tolerance and accumulation in M. elatinoides under different conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call