Abstract

We studied the effect of myriocin, an inhibitor of serine palmitoyltransferase, on cultured Leishmania (Viannia) braziliensis promastigotes. Myriocin significantly reduced synthesis of inositol phosphorylceramide, the major sphingolipid expressed in promastigotes as characterized by thin layer chromatography and electrospray ionization mass spectrometry. Log-phase promastigotes treated with 1μM myriocin showed a 52% reduction in growth rate and morphological alterations such as more rounded shape and shorter flagellum. Promastigotes treated with myriocin also displayed a variety of aberrant cell phenotypes. The percentage of cells with one nucleus and one kinetoplast (1N1K), following treatment with 1 or 5μM myriocin, decreased from 89% (control value) to 27% or 3%, respectively. The percentage of cells with two nuclei (2N2K) varied from 7% (control value) to 19% and 6% for 1 or 5μM myriocin-treated parasites, respectively. High percentage of myriocin-treated parasites exhibited large atypical cells presenting three or more nucleus (32% and 89% for 1 or 5μM myriocin, respectively). Transmission electron microscopy following treatment with 1μM myriocin showed the presence of 4N parasites possibly as a result of an incomplete cytokinesis. Addition of 3-ketodihidrosphingosine to myriocin-treated promastigotes rescue parasite growth and morphology. Addition of ethanolamine did not rescue the myriocin effect on parasite. Our findings indicate that sphingolipids are essential for the completion of cytokinesis, and may play a major role in cell proliferation in L. (V.) braziliensis, thus, differing from data described for Leishmania major sphingolipid-free mutant, where addition of ethanolamine rescue wild-type parasite characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call