Abstract

Advanced glycation end products (AGEs) have been identified in age-related intracellular protein deposits of neurodegenerative diseases. Methylglyoxal (MGO), a dicarbonyl metabolite, is a major precursor of AGEs which have been linked to the development of neurodegenerative diseases. Myricitrin, a flavanoid isolated from the root bark of Myrica cerifera, attenuated 6-OHDA-induced mitochondrial dysfunction and had a potential anti-Parkinson's disease in our previous investigation. The aims of this study were to investigate the protective effects of myricitrin against MGO-induced injury in SH-SY5Y cells and also to look for the possible mechanisms. The results showed that exposure of SH-SY5Y cells to MGO caused decreases of cell viability, intracellular ATP, mitochondrial redox activity, and mitochondrial membrane potential and an increase in reactive oxygen species generation. However, these mitochondrial dysfunctions were alleviated by co-treatment with myricitrin. Additionally, myricitrin was capable of inhibiting AGEs formation, blocking RAGE expression, and inhibiting NF-κB activation and translocation triggered by MGO in SH-SY5Y cells. Our results suggest that myricitrin alleviates MGO-induced mitochondrial dysfunction, and the possible mechanism is through modulating the AGEs/RAGE/NF-κB pathway. In summary, myricitrin might offer a promising therapeutic strategy to reduce the neurotoxicity of reactive dicarbonyl compounds, providing a potential benefit agent with age-related neurodegenerative diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.