Abstract

The robustness of standard correlation-based Global Navigation Satellite System (GNSS) signal processing can be significantly improved by pre-processing the input samples with a zero-memory non-linearity (ZMNL). A paradigm for the design of ZMNLs is provided by the M-estimator framework where heavy-tailed probability density functions (pdfs) are used to model the impairments affecting the input samples. The myriad non-linearity, obtained considering a Cauchy pdf, is analysed for the acquisition and tracking of GNSS signals in the presence of pulsed interference. The impact of the myriad non-linearity is theoretically characterised and Monte Carlo simulations are used to support theoretical findings. Finally, real GNSS signals collected in the presence of jamming are processed: the myriad non-linearity provides a significant performance improvement with respect to standard GNSS signal processing which is unable to acquire and track the samples affected by interference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.