Abstract

Myotonic dystrophy (DM) is a dominantly inherited neurodegenerative disorder for which there is no cure or effective treatment. Investigation of DM pathogenesis has identified a novel disease mechanism that requires development of innovative therapeutic strategies. It is now clear that DM is not caused by expression of a mutant protein. Instead, DM is the first recognized example of an RNA-mediated disease. Expression of the mutated gene gives rise to an expanded repeat RNA that is directly toxic to cells. The mutant RNA is retained in the nucleus, forming ribonuclear inclusions in affected tissue. A primary consequence of RNA toxicity in DM is dysfunction of two classes of RNA binding proteins, which leads to abnormal regulation of alternative splicing, or spliceopathy, of select genes. Spliceopathy now is known to cause myotonia and insulin resistance in DM. As our understanding of pathogenesis continues to improve, therapy targeted directly at the RNA disease mechanism will begin to replace the supportive care currently available. New pharmacologic approaches to treat myotonia and muscle wasting in DM type 1 are already in early clinical trials, and therapies designed to reverse the RNA toxicity have shown promise in preclinical models by correcting spliceopathy and eliminating myotonia. The well-defined ribonuclear inclusions may serve as convenient therapeutic targets to identify new agents that modify RNA toxicity. Continued development of appropriate model systems will allow testing of additional therapeutic strategies as they become available. Although DM is a decidedly complex disorder, its RNA-mediated disease mechanism may prove to be highly susceptible to therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.