Abstract

The aim of this review is to highlight recent progress in elucidating the disease mechanism in myotonic dystrophy type 1 and type 2. Research on myotonic dystrophy has led to the recognition of a novel RNA-mediated disease process. In myotonic dystrophy it is the RNA rather than protein product of a disease gene that has deleterious effects on muscle cells. These unusual RNAs, which contain a long expanse of CUG or CCUG repeats, have far reaching effects on cell function by influencing the biogenesis of other cellular RNAs. One aspect of RNA metabolism that is particularly affected is the regulation of alternative splicing. By this mechanism, effects of myotonic dystrophy repeat expansions impact many different pathways, triggering a complex set of signs and symptoms. The genetic lesion in myotonic dystrophy does not eliminate an essential muscle protein. Instead, it induces a defect of RNA processing that is potentially reversible. The nature of this disease process raises the possibility that myotonic dystrophy, among genetic disorders, may be unusually susceptible to treatment using non-gene-therapy approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.