Abstract
Myostatin is a transforming growth factor-beta family member that acts as a negative regulator of skeletal muscle growth. In mice, genetic disruption of the myostatin gene leads to a marked increase in body weight and muscle mass. Similarly, pharmacological interference with myostatin in vivo in mdx knockout mice results in a functional improvement of the dystrophic phenotype. Consequently, myostatin is an important therapeutic target for treatment of diseases associated with muscle wasting. To construct a therapeutic DNA vaccine against myostatin, we coupled the foreign, immunodominant T-helper epitope of tetanus toxin to the N terminus of myostatin, and BALB/c mice were immunized with the recombinant vector. Sera from vaccinated mice showed the presence of specific antibodies against the recombinant protein. In addition, body weight, muscle mass, and grip endurance of vaccinated mice were significantly increased. Our study provides a novel, pharmacological strategy for treatment of diseases associated with muscle wasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.