Abstract

Myostatin (MSTN), a member of the TGF-β superfamily, negatively regulates muscle growth. MSTN inhibition has been known to cause a double-muscled phenotype in skeletal muscle and fibrosis reduction in the heart. However, the role of MSTN in the cardiac extracellular matrix (ECM) needs more studies in various species of animal models to draw more objective conclusions. The main objective of the present study was to investigate whether loss of MSTN affects the cardiac extracellular matrix in pigs. Three MSTN knockouts (MSTN-/-) and three wild type (WT) male pigs were generated by crossing MSTN ± heterozygous gilts and boars. Cardiac ECM and underlying mechanisms were determined post-mortem. The role of MSTN on collagen expression was investigated by treating cardiac fibroblasts with active MSTN protein in vitro. MSTN protein was detected in WT hearts, while no expression was detected in MSTN-/- hearts. The heart-to-body weight ratio was significantly decreased in MSTN-/- pigs. The morphometric analyses, including picrosirius red staining, immunofluorescent staining, and ultra-structural thickness examination of the endomysium, revealed a significant reduction of connective tissue content in MSTN-/- hearts compared to WT. Hydroxyproline, type I collagen (Col1A), and p-Smad3/Smad3 levels were significantly lower in MSTN-/- hearts in vivo. On the contrary, cardiac fibroblasts treated with exogenous MSTN protein overexpressed Col1A and activated Smad and AKT signaling pathways in vitro. The present study suggests that inhibition of MSTN decreases cardiac extracellular matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.