Abstract

BackgroundMyostatin is a protein synthesized and secreted by skeletal muscle that negatively regulates muscle mass. The extent to which circulating myostatin levels change in the context of aging is controversial, largely due to methodological barriers.MethodsWe developed a specific and sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) assay to measure concentrations of myostatin and two of its key inhibitors, follistatin-related gene (FLRG) protein and growth and serum protein-1 (GASP-1) in 80 younger (<40 years), 80 older (>65 years), and 80 sarcopenic older women and men.ResultsOlder women had 34 % higher circulating concentrations of myostatin than younger women. Per unit of lean mass, both older and sarcopenic older women had >23 % higher myostatin levels than younger women. By contrast, younger men had higher myostatin concentrations than older men with and without sarcopenia. Younger men had approximately twofold higher concentrations of myostatin than younger women; however, older women and sarcopenic older women had significantly higher relative myostatin levels than the corresponding groups of men. In both sexes, sarcopenic older subjects had the highest concentrations of FLRG. Circulating concentrations of myostatin exhibited positive, but not robust, correlations with relative muscle mass in both sexes.ConclusionsOur data suggest that myostatin may contribute to the higher prevalence of sarcopenia in women but acts as a homeostatic regulator of muscle mass in men. Moreover, this new LC-MS/MS-based approach offers a means to determine the extent to which myostatin serves as a biomarker of muscle health in diverse conditions of muscle loss and deterioration.Electronic supplementary materialThe online version of this article (doi:10.1186/s13395-015-0047-5) contains supplementary material, which is available to authorized users.

Highlights

  • Myostatin is a protein synthesized and secreted by skeletal muscle that negatively regulates muscle mass

  • In an early cross-sectional study, serum myostatin levels measured by radioimmunoassay (RIA) were reported to be significantly elevated with advancing age and declining lean mass, suggesting that myostatin may serve as a biomarker of sarcopenia in women and men [14]

  • Analysis of other circulating biochemical parameters revealed a negative correlation between myostatin and total testosterone and sex hormone-binding globulin in Discussion In this study, we developed a highly specific and accurate multiplexed LC-MS/MS assay for measuring circulating concentrations of mature and propeptide forms of the muscle-derived protein, myostatin, and two of its inhibitors, follistatin-related gene (FLRG) and growth and serum protein-1 (GASP-1), in human serum

Read more

Summary

Introduction

Myostatin is a protein synthesized and secreted by skeletal muscle that negatively regulates muscle mass. Considerable work has since established growth and differentiation factor (GDF)-8, or myostatin, as a robust negative regulator of skeletal muscle mass. In an early cross-sectional study, serum myostatin levels measured by radioimmunoassay (RIA) were reported to be significantly elevated with advancing age and declining lean mass, suggesting that myostatin may serve as a biomarker of sarcopenia in women and men [14]. Recent studies measuring concentrations in the serum using enzyme-linked immunosorbent assays (ELISAs) have reported either no change or a decline in circulating myostatin levels in older compared to younger persons [15,16,17]. Of further concern, ELISAbased approaches for measuring circulating myostatin concentrations have yielded highly erratic values for healthy adults, ranging from just over 4 [15] to over 100 [18] and even 32,500 ng/ml [19]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call