Abstract
Pain is the most debilitating symptom of knee osteoarthritis (OA) that can even persist after total knee replacement. The severity and duration of pain do not correlate well with joint tissue alterations, suggesting other mechanisms may drive pain persistence in OA. Previous work identified that macrophages accumulate in the dorsal root ganglia (DRG) containing the somas of sensory neurons innervating the injured knee joint in a mouse OA model and acquire a M1-like phenotype to maintain pain. Here we aimed to unravel the mechanisms that govern DRG macrophage accumulation and programming. The accumulation of F4/80+iNOS+ (M1-like) DRG macrophages was detectable at day 3 after mono-iodoacetate (MIA)-induced OA in the mouse. Depletion of macrophages prior to induction of OA resolved pain-like behaviors by day 7 without affecting the initial development of pain-like behaviors. Analysis of DRG transcript identified CXCL11 and myostatin. CXCL11 and myostatin were increased at 3 weeks post OA induction, with CXCL11 expression partially localized in satellite glial cells and myostatin in sensory neurons. Blocking CXCL11 or myostatin prevented the persistence of OA pain, without affecting the initiation of pain. CXCL11 neutralization reduced the number of total and F4/80+iNOS+ DRG macrophages, whilst myostatin inhibition diminished the programming of F4/80+iNOS+ DRG macrophages. Intrathecal injection of recombinant CXCL11 did not induce pain-associated behaviors. In contrast, intrathecal myostatin increased the number of F4/80+iNOS+ DRG macrophages concurrent with the development of mechanical hypersensitivity that was prevented by macrophages depletion or CXCL11 blockade. Finally, myostatin inhibition during established OA, resolved pain and F4/80+iNOS+ macrophage accumulation in the DRG. In conclusion, DRG macrophages maintain OA pain, but are not required for the induction of OA pain. Myostatin is a key ligand in neuro-immune communication that drives the persistence of pain in OA through nervous tissue macrophages and represent a novel therapeutic target for the treatment of OA pain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.