Abstract

In intact mammalian fast-twitch skeletal muscle, a quantitative relationship exists between the phosphate content of myosin P-light chain (PLC) and the extent of isometric twitch tension potentiation. It has been proposed that PLC phosphorylation causes twitch potentiation in intact muscle by rendering the contractile element more sensitive to activation by Ca2+. If this hypothesis is correct, then an obligatory experimental outcome is that the slope of the "PLC phosphate vs. isometric tension potentiation (ITP)" relationship should increase when the amount of Ca2+ available to activate the contractile element is decreased. Intact mouse extensor digitorum longus muscles were studied in the absence and presence of sodium dantrolene, an agent that partially inhibits Ca2+ release from the sarcoplasmic reticulum (SR). Treatment of muscles with dantrolene produced a 73% reduction in isometric twitch tension and an approximately threefold increase in the slope of the PLC phosphate vs. ITP relationship. Under experimental conditions that produced fused, tetanic contractions equal to 0.52, 0.72, 0.94, and 1.0 force production, contraction-induced changes in PLC phosphate content were directly proportional to the extent of contractile element activation, whereas the extent of ITP was inversely proportional to the extent of contractile element activation. These data indicate that the slope of the PLC phosphate vs. ITP relationship varies inversely as a function of the amount of Ca2+ that is released from the SR to activate the contractile element during both twitch and fused, submaximal tetanic contractions. Furthermore, these findings support the hypothesis that ITP in intact skeletal muscle is due to a PLC phosphorylation-induced sensitization of the contractile element to activation by Ca2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.