Abstract

Myosin light chain kinase (MLCK) has been purified from various muscles as an enzyme to phosphorylate myosin light chains. While the regulatory role of smooth muscle MLCK is well understood, the role of skeletal muscle MLCK in the regulation of contraction has not been fully characterized. Such characterization of skeletal muscle MLCK is difficult because skeletal muscle myosin interacts with actin whether or not the myosin is phosphorylated. Taking the hint from our recent finding that smooth muscle MLCK inhibits the actin-myosin interaction by binding to actin (Kohama et al., Biochem Biophys Res Commun 184: 1204-1211, 1992), we investigated the regulatory role of the actin-binding activity of MLCK from chicken breast muscle in the actin-myosin interaction. The amount of MLCK that bound to actin increased with increases in the concentration of MLCK. However, MLCK hardly bound to myosin. The actin-binding activity of MLCK was affected when Ca2+ and calmodulin (Ca2+ -CaM) were present. The effect of MLCK on the actin-myosin interaction was examined by an in vitro motility assay; the movement of actin-filaments on a myosin-coated glass surface was inhibited by increasing the concentration of MLCK. When CaM was present, the inhibition was overcome in a Ca2+ -dependent manner at microM levels. The inhibition of the movement by MLCK and the recovery from the inhibition by Ca2+ -CaM were not altered whether we use phosphorylated or unphosphorylated myosin for the assay, ruling out the involvement of the kinase activity of MLCK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call