Abstract

The embryonic heart consists of five segments comprising the fast-conducting atrial and ventricular segments flanked by slow-conducting segments, i.e. inflow tract, atrioventricular canal and outflow tract. Although the incorporation of the flanking segments into the definitive atrial and ventricular chambers with development is generally accepted now, the contribution of the outflow tract myocardium to the definitive ventricles remained controversial mainly due to the lack of appropriate markers. For that reason we performed a detailed study of the pattern of expression of myosin light chain (MLC) 2a and 2v by in situ hybridization and immunohistochemistry during rat and mouse heart development. Expression of MLC2a mRNA displays a postero-anterior gradient in the tubular heart. In the embryonic heart it is down-regulated in the ventricular compartment and remains high in the outflow tract, atrioventricular canal, atria and inflow tract myocardium. MLC2v is strongly expressed in the ventricular myocardium and distinctly lower in the outflow tract and atrioventricular canal. The co-expression of MLC2a and MLC2v in the outflow tract and atrioventricular canal, together with the single expression in the atrial (MLC2a) and ventricular (MLC2v) myocardium, permits the delineation of their boundaries. With development, myocardial cells are observed in the lower endocardial ridges that share MLC2a and MLC2v expression with the myocardial cells of the outflow tract. In neonates, MLC2a continues to be expressed around both right and left semilunar valves, the outlet septum and the non-trabeculated right ventricular outlet. These findings demonstrate the contribution of the outflow tract to the definitive ventricles and demonstrate that the outlet septum is derived from outflow tract myocardium. Anat Rec 254:135–146, 1999. © 1999 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.